ACC Precalculus

Determinants and Cramer's Rule

Name

Determinant of a 2 X 2 Matrix

Associated with each square matrix (nxn) is a real number called its determinant. The **determinant** of a matrix A is denoted by $\det A$ or by |A|.

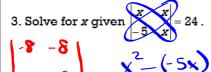
Determinant of a 2×2 Matrix

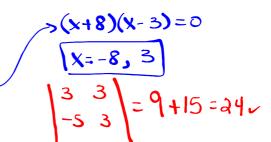
$$\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$$

The determinant of a 2×2 matrix is the difference of the products of the elements on the diagonals.

Evaluate each determinant.

$$\begin{vmatrix} 3 \\ 5 \end{vmatrix} = 5 - 6 = -1$$
 2. $\begin{vmatrix} -4 & 3 \\ -5 & 2 \end{vmatrix} = -8 - (-15) = 7$



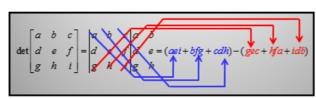


Jan 10-11:26 AM

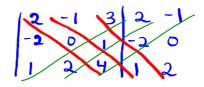
Determinant of a 3 X 3 Matrix

Steps for finding the determinant of a 3x3 Matrix

- Repeat the first two columns to the right of the determinant.
- Subtract the sum of the **products in red** from the sum of the **products in blue**.



4. Given
$$A = \begin{bmatrix} 2 & -1 & 3 \\ -2 & 0 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$
, find det(A).



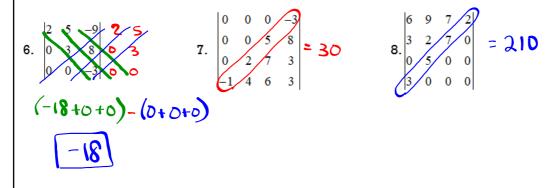
$$(0-1-12)-(0+4+8)$$

-13-12 = -25

5. Evaluate
$$\begin{vmatrix} 1 & 3 & 4 & 1 & 3 \\ 2 & 1 & 5 & 2 & 1 \\ 3 & 6 & 7 & 3 & 6 \end{vmatrix}$$
 (7+45+48) $-(12+30+42)$

Special Determinants

Triangular Matrices – When the numbers below or above a diagonal in a square matrix are all zeros, the determinant can be found by multiplying the numbers that lie on the diagonal.



Jan 10-11:29 AM

<u>Determinant Application</u>: Finding the area of a polygon given its vertices.

The vertices must be <u>in order</u>. Even though we are not actually finding the determinant we can still get the area by crossing out diagonals.

Example: Find the area of the quadrilateral with vertices (-2, 3), (-4, 5), (6, 7), and (2, 0). **These points must be written in order**. You can start with any of the points, but the following points must be written consecutively. Graph to make sure they are in order.

In the case of 4 vertices:

Area =
$$\pm \frac{1}{2} \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{bmatrix}$$
 write l^{st} point again at the end

Find the sum of the diagonals going down to the right and subtract the sum of the diagonals going up to the right. Remember that area is always positive.

9. Our example: (-4, 5), (-2, 3), (2, 0), (6, 7) I have reordered according to x-values

values.

Area =
$$\frac{1}{2} \frac{1}{2} \begin{bmatrix} -12 + 0 + 14 + 30 \\ -10 + 6 + 0 - 28 \end{bmatrix}$$

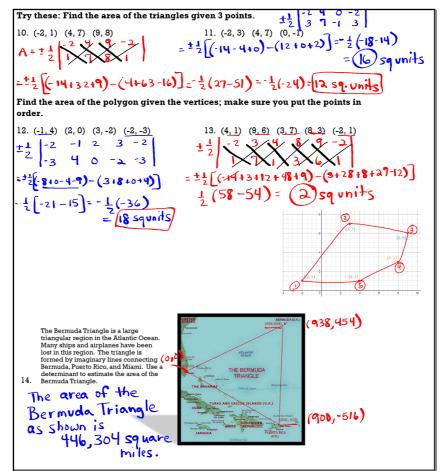
= $\frac{1}{2} \frac{1}{2} \begin{bmatrix} -12 + 0 + 14 + 30 \\ -10 + 6 + 0 - 28 \end{bmatrix}$

= $\frac{1}{2} \frac{1}{2} \begin{bmatrix} 32 - (-32) \end{bmatrix}$

= $\frac{1}{2} \begin{bmatrix} 32 - (-32) \end{bmatrix}$

= $\frac{1}{2} \begin{bmatrix} 32 - (-32) \end{bmatrix}$

= $\frac{1}{2} \begin{bmatrix} 32 - (-32) \end{bmatrix}$



Jan 10-11:30 AM

Practice: You will need to show work clearly on a separate sheet of paper.

Find the value of each given determinant.

1)
$$\begin{vmatrix} 3 & 6 \\ 5 & 3 \end{vmatrix} = -2$$

$$\mathbf{2}) \begin{vmatrix} 6 & -2 \\ 2 & 1 \end{vmatrix} = \mathbf{1} \mathbf{0}$$

2)
$$\begin{vmatrix} 6 & -2 \\ 2 & 1 \end{vmatrix} = 10$$
 3) $\begin{vmatrix} 4 & -2 \\ -8 & 4 \end{vmatrix} = 0$

5)
$$\begin{vmatrix} 5 & 2 & -1 \\ 3 & -2 & 5 \\ 1 & 1 & 2 \end{vmatrix} = -6$$

4)
$$\begin{vmatrix} 4 & 3 & 1 \\ 0 & 2 & 3 \\ 4 & 2 & 5 \end{vmatrix} = 44$$
5) $\begin{vmatrix} 5 & 2 & -1 \\ 3 & -2 & 5 \\ 1 & 1 & 3 \end{vmatrix} = -68$
6) $\begin{vmatrix} 0 & 3 & 2 \\ -4 & -1 & 2 \\ 5 & 2 & -2 \end{vmatrix} = \bigcirc$

7) Find the area of a triangle with the given vertices: (0,0), (0,50), (70,20).

The area is 1750 square units.

Use Cramer's Rule to solve the linear system.

8)
$$2x + y = 11$$

 $-3x + 2y = 1$
(3,5)

9)
$$4x - 5y = 6$$

 $7x - 12y = 4$
(4, 2) $-6x + 4y + z = 32$
10) $5x + 2y + 3z = 13$
 $x - y + z = -5$
(-1, 6, 2)

Solve for x.

11)
$$\begin{vmatrix} 2x & 4 \\ x & 3 \end{vmatrix} = 12$$

12)
$$\begin{vmatrix} 3x & 16 \\ 12 & x \end{vmatrix} = 72$$

13)
$$\begin{vmatrix} x & -x \\ 5 & x \end{vmatrix} = -6$$
 14) $\begin{vmatrix} 2x & 2x \\ -6 & x \end{vmatrix} = -1$

11)
$$\begin{vmatrix} 2x & 4 \\ x & 3 \end{vmatrix} = 12$$
12) $\begin{vmatrix} 3x & 16 \\ 12 & x \end{vmatrix} = 72$
13) $\begin{vmatrix} x & -x \\ 5 & x \end{vmatrix} = -6$
14) $\begin{vmatrix} 2x & 2x \\ -6 & x \end{vmatrix} = -18$

$$X = 0$$

$$X = 1\sqrt{88} \text{ or } X = -3$$

Choose 15 OR 16 to solve.

15)
$$\begin{vmatrix} x & 2 & 4 \\ 9 & 1 & -1 \\ 3 & 2 & x \end{vmatrix} = 26$$

15)
$$\begin{vmatrix} x & 2 & 4 \\ 9 & 1 & -1 \\ 3 & 2 & x \end{vmatrix} = 26$$
 $\times = 2$, $\times = 3$, $\times = 3$ $\times = 3$