Lesson Opener Find each product.

Identity and Inverse Matrices Notes

Accelerated Precalculus

1.
$$\begin{bmatrix} -1 & 5 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1+0 & 0+S \\ 3+0 & 0+8 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 3 & 8 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 6 \\ 7 & -5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

2.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 6 \\ 7 & -5 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 4+0 & 0+0 & 6+0 \\ 0+7 & 0-5 & 0+4 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 6 \\ 7 & -5 & 4 \end{bmatrix}$$

An identity matrix of multiplication is a $\underline{\mathbf{Squore}}$ matrix with $\underline{\mathbf{1s}}$ on the main

diagonal (upper left to lower right) and _____ for all other entries.

Note: If A is a square matrix with dimensions $n \times n$ and I is the identity matrix with dimensions $n \times n$, then AI = IA.

2 X 2 multiplicative identity:

Write the 4 X 4 identity matrix:

4.
$$\begin{bmatrix} -7 & 2 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} -718 & -1414 \\ 4-4 & 8-7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

5.
$$\begin{bmatrix} 3 & 1 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{3} \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 3-2 & -1+1 \\ 6-6 & -2+3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The product is an identity matrix.

If A and A^{-1} are inverse matrices, then $A \cdot A^{-1} = I$ and $A^{-1} \cdot A = I$

Are the following matrices inverses? Show work and explain.

6.
$$\begin{bmatrix} 1 & -\frac{3}{2} \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -4 & 4 & -3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Are A &B inverse

Since AB=I, then A and B are inverses.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. The inverse matrix is $A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ where $|A| = ad - bc$ and $|A| \neq 0$.

Find the inverse matrix if it exists. If it does not exist, explain why

$$8. B = \begin{bmatrix} 8 & -4 \\ 5 & -3 \end{bmatrix} \\
(B) = -24 + 20 \\
= -4$$

$$B^{-1} = -\frac{1}{4} \begin{bmatrix} -3 & 4 \\ -5 & 8 \end{bmatrix}$$

$$\begin{bmatrix} \frac{3}{4} & -1 \\ \frac{5}{4} & -2 \end{bmatrix}$$

9.
$$c = \begin{bmatrix} -2 & 3 \\ -8 & 12 \end{bmatrix}$$
 $|c| = -24+24=0$
Since $|c| = 0$, c^{-1} doe

Find the inverse of a 3 X 3 Matrix using technology.

10.
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 6 & -2 & -3 \end{bmatrix}$$

11.
$$B = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & 2 \\ 1 & 6 & 5 \end{bmatrix}$$

Solving Matrix Equations

Recall: Solve the linear equation $\frac{1}{2} \frac{x+4=9}{4-9} \cdot \frac{1}{2} \cdot \frac{1}{2$

$$\begin{bmatrix} \mathbf{A} & \mathbf{X} = & \mathbf{B} \\ 4 & 7 \\ 1 & 2 \end{bmatrix} X = \begin{bmatrix} 9 & 12 & 0 \\ -4 & 5 & -2 \end{bmatrix}$$

$$X = \frac{1}{1} \begin{bmatrix} 2 & -7 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 9 & 12 & 0 \\ -4 & 5 & -2 \end{bmatrix}$$

1. Find unknown matrix X such that
$$A X = B$$

$$\begin{bmatrix} 4 & 7 \\ 1 & 2 \end{bmatrix} X = \begin{bmatrix} 9 & 12 & 0 \\ -4 & 5 & -2 \end{bmatrix}$$

$$X = \frac{1}{1} \begin{bmatrix} 2 & -7 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 9 & 12 & 0 \\ -4 & 5 & -2 \end{bmatrix}$$

$$X = \frac{1}{1} \begin{bmatrix} 2 & -7 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 9 & 12 & 0 \\ -4 & 5 & -2 \end{bmatrix}$$

$$X = A B$$

o what have we found? How can we check the answer?
$$\begin{bmatrix}
4 & 7 \\
1 & 2
\end{bmatrix}
\begin{bmatrix}
46 & -11 & 14 \\
-25 & 8 & -8
\end{bmatrix} =
\begin{bmatrix}
9 & 12 & 7 \\
-4 & 5 & -2
\end{bmatrix}$$

2. Solve the matrix equation $\begin{bmatrix} -4 & 2 \\ 8 & 1 \end{bmatrix} X = \begin{bmatrix} -16 & 6 \\ 22 & 13 \end{bmatrix} \qquad \qquad A \times = B \implies X = A^{-1}B$

$$A \times = B \rightarrow X = A^{-1}B$$

$$\chi = -\frac{1}{20} \begin{bmatrix} 1 & -2 \\ -8 & -4 \end{bmatrix} \begin{bmatrix} -16 & 6 \\ 22 & 13 \end{bmatrix}$$

$$A = -4 - 16 = -20$$

$$X = -\frac{1}{20} \begin{bmatrix} 1 - 2 \\ -8 - 4 \end{bmatrix} \begin{bmatrix} -16 & 6 \\ 22 & 13 \end{bmatrix} = -\frac{1}{20} \begin{bmatrix} -60 & -20 \\ 40 & -100 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ -2 & 5 \end{bmatrix}$$

Show all this work

3. Solve the matrix equation
$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X - \begin{bmatrix} -1 & 1 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 8 & 2 \end{bmatrix} + \begin{bmatrix} -3 & 3 \\ 5 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 13 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 13 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 13 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 13 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 13 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 13 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 13 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 13 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 13 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix} X = \begin{bmatrix} 3 & 7 \\ 6 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 13 \\ 76 & -13 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 6 \\ 76 & 9 \end{bmatrix} X = \begin{bmatrix} 6 & 2 \\ 76 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 \\ 76 & 9 \end{bmatrix} X = \begin{bmatrix} 6 & 2 \\ 76 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 \\ 76 & 9 \end{bmatrix} X = \begin{bmatrix} 6 & 2 \\ 76 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 \\ 76 & 9 \end{bmatrix} X = \begin{bmatrix} 6 & 2 \\ 76 & 9 \end{bmatrix}$$
Solve a 3 X 3 system using inverse matrices and technology.

$$\begin{bmatrix} 2x + 3y + 4z = 7 \\ 6 & -x + 5y + 2z = 6 \\ -3x + 6y = 3 \end{bmatrix}$$