Law of Cosines CT March 10, 2020

ACC Precalculus Law of Cosines Name ______ Date Block

The Law of Cosines

The law of cosines is used to solve triangles given two sides and the included angle (SAS) or given three sides (SSS). When given 3 sides of a triangle (SSS), you must find the angle opposite the largest side first!

In any triangle ABC,

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

When the included angle is 90°, the law of cosines reduces to the Pythagorean theorem.

Example 1: In $\triangle ABC$, a = 32, c = 48, and $B = 125.2^{\circ}$. Solve the triangle.

Sin 125.2°
$$\Rightarrow$$
 A=sin (ANS)=32.3° \Rightarrow A=sin (ANS)=33.3° \Rightarrow A=31.5° \Rightarrow A=32.5° \Rightarrow A=31.5° \Rightarrow A=31.5° \Rightarrow A=32.5° \Rightarrow A=31.4° \Rightarrow A=31.5° \Rightarrow A=32.5° \Rightarrow A=sin (ANS)=31.5° \Rightarrow A=31.5° \Rightarrow A=32.3° \Rightarrow A=33.3° \Rightarrow A=33.3°

Example 2: Solve ΔRST , given r = 3.5, s = 4.7, and t = 2.8.

Law of Cosines CT March 10, 2020

Use Heron's Formula to find the area of a triangle when given 3 sides (SSS).

Heron's Formula

The area K of a triangle with sides a, b, and c is

$$K = \sqrt{s(s-a)(s-b)(s-c)}$$
where $s = \frac{1}{2}(a+b+c)$.

Note: s is the "semi-perimeter."

Example 3: Find the area of a triangle with side 5, 8, and 10.

$$S = \frac{1}{2}(5+8+10) = 11.5$$

$$K = \sqrt{11.5(11.5-5)(11.5-8)(11.5-10)}$$

$$= \sqrt{11.5(6.5)(3.5)(1.5)}$$

$$K = 19.8 \text{ sq units}$$

Example 4: A university landscaping architecture department is designing a garden for a triangular area in a dormitory complex. Two sides of the garden, formed by the sidewalks in front of buildings A and B, measure 172 ft and 186 ft, respectively, and together form a 53° angle. The third side of the garden, formed by the sidewalk along Crossroads Avenue, measures 160 ft. What is the area of the garden to the nearest square foot?

$$s = \frac{1}{2}(172 + 160 + 186) = 259$$
 $K = \sqrt{259(87)(99)(73)}$
 $K = 12,761$ $sq ft$

Related topic: Find the area of a triangle using sine.

The area of any $\triangle ABC$ is one half the product of the lengths of two sides and the sine of the included angle. Let K be the area of a triangle. Then

Page 5

$$K = \frac{1}{2}bc\sin A$$

$$K = \frac{1}{2}ab\sin C$$

$$K = \frac{1}{2}ac\sin B$$

Choose the formula needed depending on the given information.

Example 7: A university landscaping architecture department is designing a garden for a triangular area in a dormitory complex. Two sides of the garden, formed by the sidewalks in front of buildings A and B, measure 172 ft and 186 ft, respectively, and together form a 53° angle. The third side of the garden, formed by the sidewalk along Crossroads Avenue, measures 160 ft. What is the area of the garden to the nearest square foot?

Unit 5

Law of Sines and Law of Cosines

Formulas

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a2 = b2 + c2 - 2bc \cos A$$
$$b2 = a2 + c2 - 2ac \cos B$$
$$c2 = a2 + b2 - 2ab \cos C$$

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
$$s = \frac{1}{2}(a+b+c)$$

$$K = \frac{1}{2}bc\sin A$$

$$K = \frac{1}{2}ac\sin B$$

$$K = \frac{1}{2}ab\sin C$$

Complete p.10: #1-6, also p.12: 1, 3, 6, 7, 12, 13, and 15. You need to add this work to last night's work on separate paper. Answers below.

Law of Cosines CT March 10, 2020

Answers to Law of Sines and Cosines Practice Worksheet

```
1) m \angle C = 108.6^{\circ}, m \angle A = 31.1^{\circ}, m \angle B = 40.3^{\circ}
```

3)
$$m \angle K = 47.3^{\circ}, m \angle H = 49.9^{\circ}, p = 16.1$$

5)
$$m \angle C = 59^{\circ}, m \angle A = 30^{\circ}, m \angle B = 91^{\circ}$$

7)
$$m \angle X = 51.9^{\circ}, m \angle Y = 72.2^{\circ}, z = 24.7$$

9)
$$m \angle K = 19.3^{\circ}, m \angle H = 50.7^{\circ}, p = 34$$

11)
$$m \angle X = 137.1^{\circ}$$
, $m \angle Y = 22.9^{\circ}$, $x = 57.7$ cm
 $Or \ m \angle X = 2.9^{\circ}$, $m \angle Y = 157.1^{\circ}$, $x = 4.3$ cm

13) Not a triangle

= 15 / .1°,
$$x = 4.3$$
 cm
14) $m\angle P = 60.6^{\circ}$, $m\angle K = 30.4^{\circ}$, $p = 31$ in

15) Not a triangle

16)
$$m \angle E = 116.6^{\circ}$$
, $m \angle F = 32.4^{\circ}$, $e = 41.7$ in $Or \ m \angle E = 1.4^{\circ}$, $m \angle F = 147.6^{\circ}$, $e = 1.1$ in

18)
$$m \angle A = 49^{\circ}$$
, $c = 11$ cm, $b = 32$ cm

20)
$$m \angle Q = 11.2^{\circ}$$
, $q = 12$ in, $p = 22$ in

2)
$$m \angle F = 61^{\circ}, m \angle D = 65^{\circ}, e = 25$$

4)
$$m \angle T = 16^{\circ}$$
, $m \angle R = 50^{\circ}$, $s = 29.8$

6)
$$m \angle Y = 230$$
, $m \angle Z = 115.6^{\circ}$, $m \angle X = 41.4^{\circ}$

8)
$$m \angle X = 30^{\circ}, m \angle Y = 32^{\circ}, m \angle Z = 118^{\circ}$$

10)
$$m \angle F = 60.3^{\circ}$$
, $m \angle D = 25.7^{\circ}$, $e = 20.7$

12)
$$m \angle Q = 5.7^{\circ}$$
, $r = 27.8$ m, $p = 24.8$ m

17)
$$m \angle Y = 16^{\circ}$$
, $m \angle Z = 14^{\circ}$, $y = 16$ cm

19)
$$m \angle B = 88^{\circ}$$
, $a = 12$ ft, $b = 39.4$ ft

Answers to Area of Triangles

1)	29.4 units ²	 18.5 units²
5)	22.8 units ²	6) 54.3 units ²

units2 9) 34 units² 10) 61.7 units²

13) 7.7 units² 14) 73.8 units² 17) 17.2 units²

18) 35.2 units²

3) 17.2 units²

7) 22.4 units² 11) 85.7 units² 15) 23.4 units²

19) 71.6 units²

4) 7.4 units²

8) 46.5 units²

12) 44 units² 16) 116.5 units²

20) 113.6 units²