II. Solving Quadratic Equations by Completing the Square

To solve a quadratic equation in standard form $ax^2 + bx + c = 0$ by completing the square:

Steps

1. <u>'a' MUST equal 1.</u>

- 2. First you move the 'c'.
- 3. Then you find the 'b'. (
 - Then you half it. S
 - Then you square it. 25
 - Then you add it to both sides
- 4. Rewrite the perfect square trinomial as a

binomial squared:
$$\left(x + \frac{1}{2}b\right)^2$$
 or $\left(x + \frac{b}{2}\right)^2$.

- 5. Take the square root of both sides; don't forget $\pm\,.$
- 6. Finish solving for *x* using inverse operations. Simplify radical if needed.

Steps

1. 'a' MUST equal 1.

- 2. First you move the 'c'.
- 3. Then you find the 'b'.
- Then you half it.
 - · Then you square it.
 - Then you add it to both sides.
- 4. Rewrite the perfect square trinomial as a

binomial squared:
$$\left(x + \frac{1}{2}b\right)^2$$
 or $\left(x + \frac{b}{2}\right)^2$.

- 5. Take the square root of both sides; don't forget \pm .
- Finish solving for x using inverse operations. Simplify radical if needed.

Example 1:

$$x^{2}-10x+34=0$$

 $x^{2}-10x+25=-34+25$

$$x^{2}$$
_10x+a5=-34+a5
 $\sqrt{(x-5)^{2}} = \sqrt{-9}$ ID
 $x-5=\pm 3i$
 $x=5\pm 3i$
 $x=5\pm 3i$, 5-3i

Example 2:
$$\frac{2x^2+12x-10}{3} = \frac{0}{2}$$

$$x^2+6x-5=0$$

$$x^2+6x+9=5+9$$

$$(x+3)^2=14$$

$$x+3=\pm \sqrt{14}$$

$$x+3=\pm \sqrt{14}$$

$$x=-3\pm \sqrt{14}$$

Solve each quadratic equation by completing the square.

1.
$$x^2 - 10x + 10 = 0$$

3.
$$\frac{3x^2}{3} + \frac{36x}{3} = \frac{-42}{3}$$

 $x^2 + 12x + 36x = -14 + 36$

4.
$$5x^2 - 80x = -40$$

$$x^2-16x=-8$$

$$\frac{x^{2}-16x+64}{(x-8)^{2}-56}$$

Assignment: Complete #8-12. Use #26-29 for additional practice (optional).

Solve each equation by completing the square.

8.
$$x^2 - 6x = -4$$

9.
$$x^2 + 8 = 6x$$

10.
$$2x^2 - 20x = 8$$

11.
$$x^2 = 24 - 4x$$

12.
$$10x + x^2 = 42$$

13.
$$2x^2 + 8x - 15 = 0$$

Solve each equation by completing the square.

26.
$$x^2 + 2x = 7$$

27.
$$x^2 - 4x = -1$$

28.
$$2x^2 - 8x = 22$$

29.
$$8x = x^2 + 12$$

30.
$$x^2 + 3x - 5 = 0$$

31.
$$3x^2 + 6x = 1$$

Discriminant of a Quadratic Equation

The discriminant of a quadratic equation in standard form, $ax^2 + bx + c = 0$,

is the expression $\frac{b^2 - \sqrt{ac}}{c}$. The discriminant of a quadratic equation tells us about the number and type of solutions of the equation.

If $b^2 - 4ac < 0$ (negative) there are two imaginary solutions.

What is the discriminant in problem #1? -36 What are the solutions? 513 Uf a = 1 and b is even, solve using completing the square, otherwise use the quadratic formula

If $b^2 - 4ac = 0$, there is one <u>repeated</u>, real, rational solution.

What is the discriminant of $9x^2 + 6x + 1 = 0$?

Solve by factoring as a special product.

62-40C 62-4(9)H

2 3 11 2

If $b^2 - 4ac > 0$ (positive) there are <u>two real</u> solutions. You also need to determine if the real solutions are rational or irrational.

If $b^2 - 4ac$ is a positive perfect square, the real solutions are <u>rational</u>, and the equation can solved by **factoring**.

What is the discriminant in problem #4? 49 What are the solutions? 3, -2

If $b^2 - 4ac$ is positive and **not** a perfect square, the real solutions are <u>irrational</u> (there will be a radical in the answer).

What is the discriminant in problem #2? $\frac{56}{4}$ What are the solutions? $\frac{8}{4}$ = $\frac{3}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

If a=1,b is even, solve by completing the square. But if a>1, or b is odd, solve using the quadratic formula

If the discriminant is	# of Solutions	Real or Imaginary	Rational, Irrational, or Neither	Solving Method	1, biseven
Negative	a	Imag.	N	0 *	others
Zero	1 rep.	Real	Rational	SP	
Positive and a perfect	2	Real	Rational	Factoring	
ositive, not a perfect quare	a	Real	Irrational	cs or OF	
quation	Discriminant $b^2 - 4ac$	# of Solutions app irra	e of Solutions, list all tha ly: real, imaginary, ration tional	Method	
$\begin{array}{c} 204 \\ x^2 - 10x + 16 = 0 \\ -10 \end{array}$	36	2	Zeal Rational	Factoria	g
	2_11\Va	1921 1 (4)	200	social,	
36 $x^2 + 16x + 64 = 0$	56-25 0	Baca,	Rational	Produc	